Lambda Sensor

LSU 4.2

Features:

- Application: lambda 0.65 to ∞
- Wide-band
- Exhaust gas temperature range (max.) for short time <1300°C
- Max. Hexagon temperature 570°C

This sensor is designed to measure the proportion of oxygen in exhaust gases of automotive gasoline engines.

The wide band lambda sensor LSU 4.2 is a planar $\rm ZrO_2$ dual cell limiting current sensor with integrated heater. Its monotonic output signal in the range of lambda 0.65 to air makes the LSU capable of being used as a universal sensor for lambda 1 measurement as well as for other lambda ranges. The connector module contains a trimming resistor, which defines the characteristic of the sensor.

The main benefit of the LSU is the very robust design.

This lambda sensor operates only in combination with a special LSU-IC, which is implemented in the HT-CL-AF1000-LS.

Application

Application lambda 0.65 to ∞ Fuel compatibility Gasoline ≤ 2.5 bar (higher with decrease accuracy) Exhaust gas pressure Exhaust gas temperature range (operating) 930°C Exhaust gas temperature range (max.) for short time < 1300°C Hexagon temperature < 570°C Cable and protective sleeve temperature < 250°C Connector temperature < 120°C -40 to 100°C Storage temperature range Max. vibration (stochastic peak level) 300 m/s²

Installation Notes

- This lambda sensor operates only in combination with a special LSU-IC, which is implemented in the HT-CL-AF1000-LS.
- The lambda sensor should be installed at point which permits the measurement of a representative exhaust -gas mixture, which does not exceed the maximum permissible temperature.
- Install at a point where the gas is as hot as possible.
- Observe the maximum permissible temperature.
- As far as possible install the sensor vertically (wire upwards).
- The sensor is not to be fitted near to the exhaust pipe outlet, so that the influence of the outside air can be ruled out.
- The exhaust-gas passage opposite the sensor must be free of leaks in order to avoid the effects of leak -air.
- Protect the sensor against condensation water.
- The sensor is not to be painted, nor is wax to be applied or any other forms of treatment. Use only the recommended grease for lubricating the thread.

Dimensions

Mounting recommendation

Recommended materials for the mating thread in the exhaust pipe *: THexagon > 600°C or TGas > 930°C

Specifications

Mechanical Data

Weight w/o wire:	120 g
Thread:	M18x1.5
Wrench size:	22 mm
Thightening torque:	40 to 60 NM

Electrical Data

Power supply H+ nominal:	9 V
Heater power steady state:	
Heater control frequency:	
Nominal resistance of Nernst cell:	
Max. current load for Nernst cell:	

Characteristic

Signal output:	I _p meas
Accuracy at lambda 0.8:	0.80 ± 0.01
Accuracy at lambda 1:1	.016 ± 0.007
Accuracy at lambda 1.7:	. 1.70 ± 0.05

I _p [mA]	lambda	UA [V], v=17
-1.85	0.70	-
-1.08	0.80	0.364
-0.76	0.85	0.700
-0.47	0.90	1.005
0.00	1.009	1.500

I _p [mA]	lambda	UA [V], v=17
0.34	1.18	1.858
0.68	1.43	2.216
0.95	1.70	2.500
1.40	2.42	2.973
2.55	Air	4.183

Please note: U_A is not an output signal of the lambda sensor, but the output of the evaluation circuit. Only I_P correlates with the oxygen content of the exhaust gas.

Heater Strategy

T _{Sensor} [°C]	-40	-10	20	50
U _{H, eff, max} (t=0) [V]	8,5	9,5	10,5	10,5

Connectors and Wires

Connector:	Y 928 K00 050
Mating connector:	D 261 205 138-01
Pin 1:	IP/APE
Pin 2:	UN/RE
Pin 3:	VM/IPN
Pin 4:	Uh-/H
Pin 5:	Uh+/H
Pin 6:	IA/RT
Wire length L:	60.0 cm

HT-MPU-U5832

The closed governing loop together with Cuteline Lambdacontroler

Genset Control / SCADA

Common CAN Bus

The Lambda Control in the closed loop consisting of:

- HT-CL-AF-1000LS or 1500P Lambdacontroller
- DMU-01 / 0-2.5 Pressuresensor
- LSU 4.2 Lambdasensor
- HT-SG-100 Governor
- HT-MPU-U5832 Pick Up

Wiring Harness

- CH-DMU-L07
- CH-LSU-L07
- CH-1230-L04

Local Distributor / Partner:

HUEGLI TECH AG (LTD) Murgenthalstrasse 30 4900 Langenthal Switzerland Phone: +41 62 916 50 30 Fax: +41 62 916 50 35 e-mail: sales@huegli-tech.com www.huegli-tech.com