

CuteLine Gas Mixer Control AF1000LS

Manual

Doc.-No.: HT-CL-AF1000LS_MN_EN_10.2020 Version: 2.1 Date of Issue: 21.10.2020

HUEGLI TECH Switzerland

Manufacturers address HUEGLI TECH AG Murgenthalstrasse 30 CH-4900 Langenthal

> HUEGLI TECH AG (LTD) Murgenthalstrasse 30 4900 Langenthal Switzerland Phone: +41 62 916 50 30 Fax: +41 62 916 50 35 www.huegli-tech.com

This document, and the information contained herein is the intellectual property of HUEGLI TECH. It is to be used only in conjunction with the specific system or the specific equipment for which it was meant, and may not be used for any other purpose. The copyright has been applied to every page. We reserve all rights for this document, also in the event of application for patents or registry of patterns or designs. None of the information contained herein may be disclosed to third parties, nor may it be reproduced, copied or transmitted in any way, shape or form, or by any means, electronic, mechanical, or otherwise, without the prior written permission of HUEGLI TECH.

Unless otherwise stated, masculine nouns and pronouns do not refer exclusively to men.

All trademarks used in this document are properties of their respective owners.

Revision History

The changes and additions are added here every time a new revision of the document is made.

Rev	Description	Date	Author
0.1	Preliminary Version	08.10.2012	IF
0.2	Initial Version	15.01.2013	UM
0.3	Rename of the manual – HT-CL-AF1000LS	04.03.2014	UM
1.0	First official release	01.04.2014	UM
1.3	Correction of wiring	14.07.2014	IF
1.4	MiniMix added in Mixer Selection	13.04.2015	IF
1.5	J 1939 Mode added	01.05.2015	IF
1.6	Wiring for O2 Probe modified	04.03.2016	IF
1.7	MiniMix New Version (from SerNo. HT1057)	09.06.2016	IF
1.8	J1939 register added	07.03.2018	RR
1.9	Dip switch2 added	10.01.2019	RR
2.0	R26, R77 trim pot resistor changed to fixed resistor	20.05.2019	RR
2.1	Added instruction for Data Logging function	21.10.2020	JM

Approved:

	Author	R & D	Product Manager
Date & Initials	08.10.2013	15.01.2014	16.01.2014
	IF	TL	UM

Table of Contents

Revi	sion History3
1	Installation declaration (for an incomplete machine)6
2	About this document7
2.1	Information about the Manual7
2.1.1	Contents7
2.1.2	Product affiliation7
2.1.3	This Manual is an integral part of the product7
2.2	Warning signs in this document7
2.2.1	Warning sign design8
2.3	Other symbols8
3	Safety9
3.1	Basic Safety Instructions9
4	General Guidelines
4.1	Introduction10
4.2	Safety instructions and Warnings10
4.3	Guarantee terms and conditions10
4.3.1	Correct use10
4.3.2	Use of Accessories11
5	Purpose and Function
6	Installation and connection
6.1	Mounting13
6.2	Electrical Connection13
6.3	Power Supply13
6.4	Wiring Probe and Mixer13
6.5	Dip Switch Settings14
*Adc	Iress Selection 16 (DIP-SW 1:1 to 1:4 ON) is for J1939 Mode, see Chapter 7.1.4.214
6.6	CAN Bus Connection15
6.7	USB Port15
7	PC Software for AF 1000LS Configuration 16
7.1	Installation16
7.1.2	Settings17
7.1.3	Controller Values17

CuteLine

AF 1000LS

7.1.4	Can Bus Sources	18
7.1.4	1.1 Can Bus Connection with HT-DST 4602	18
7.1.4	I.2 J1939 Connection to other Genset Controllers	18
7.2	Data Logging	20
7.2.1	PC Software version 1.12 and above	20
7.2.2	PC Software version 1.11 and below	21
8	Measured Values and Status	23
8.1	Measured Values	23
8.1.1	Mixer Values	23
8.1.2	2 Probe Heater	23
8.1.3	3 Lambda / O2 - values	24
8.1.4	l Status Probe Heating	24
8.1.5	5 Status Controller	24
8.1.6	Status Probe	24
9	Technical Data	25
9.1	Input/output parameters	25
9.2	Performance	25
9.3	Ambient	25
9.4	Standards / Regulation	25
9.5	Standards / Regulation	25
9.6	Dimension and weight	25
9.7	Configuration parameters	25

1 Installation declaration (for an incomplete machine)

Installation declaration (Directive 2006/42/EC, Appendix II B)

The manufacturer: Huegli Tech Murgenthalstrasse 30 4900 Langenthal Switzerland

hereby declares that the incomplete machinery:

General description:HT-CL-AF1000LS

complies with the basic health and safety requirements of machinery directive 2006/42/EC Appendix I.

The special technical documents in compliance with Appendix VII part B have been produced.

The incomplete machine corresponds with the following other EC directives: Low tension directive 2006/95/EC

The following harmonised norms were applied: DIN EN ISO 12100:2011 (consolidation of EN ISO 12100-1; EN ISO 12100-2; EN ISO 14121-1)

Authorised representative for creation of the technical documents: U. Moser Murgenthalstrasse 30 4900 Langenthal

The special technical documents are transmitted in electronic form as required by individual state offices.

Operating the incomplete machine is not permitted until the incomplete machine is built into a machine that conforms to the provisions of the machinery directive and an EC conformity declaration in compliance with Appendix II A is provided.

Langenthal 26.09.2013

Huegli Tech AG,

1 illoses

Moser Ulrich Senior Product Manager

2 About this document

2.1 Information about the Manual

2.1.1 Contents

This Manual contain important details and information about the CuteLine AF1000LS Module

2.1.2 Product affiliation

The Manual describes the finished product at the time of initial delivery.

Supplementary to this manual, there are no special contractual agreements and technical documents needed or available.

2.1.3 This Manual is an integral part of the product

- To ensure trouble-free and safe operation as well as the settlement of any warranty claims, always read this manual first and observe all the information contained herein.
- Keep these Manual close to the product
- Always give the Manual to each subsequent owner or user. Huegli Tech shall not accept liability for any damages or malfunctioning caused by non-adherence to this Manual.
- Please contact Huegli Tech Customer Service if you have any further questions after reading these operating instructions.

2.2 Warning signs in this document

The warning signs in this document provide information about dangers which may arise during product operation. The relevant warning signs are displayed in the "safety" section and at the beginning of each chapter.

There are 3 types of warning signs:

Signal word	Meaning	Consequences of non-adherence
	Warns of imminent danger	If not avoided will result in death or se-
		rious injury.
	Warns of a possible danger	If not avoided could result in death or
		serious injury.
	Warns of a possibly dangerous	If not avoided could result in minor or
	situation	moderate injury.

2.2.1 Warning sign design

The type and source of the imminent danger is specified here!
Possible consequences of non-adherence are stated here.
Protective measures against the danger are listed here

> Always read and carefully observe all warning signs.

2.3 Other symbols

	NOTICE
Ľ	The sign specifies possible property damages
	Protective measures against property damages are listed here.
	This symbol displays safety instructions
i	This symbol displays useful and important information.
\triangleright	This symbol refers to an actual task.

3 Safety

3.1 Basic Safety Instructions

Some of the CuteLine functions are subjected to changes depending on SW version.

The data in this manual only describes the product and are not warranty of performance or characteristic.

NOTICE

Huegli Tech believes that all information provided herein is correct and reliable and reserves the right to update at any time. Huegli Tech does not assume any responsibility for its use unless otherwise expressly undertaken.

Dangerous voltage

In no case touch the *terminals for voltage and current* measurement! Always connect grounding terminals!

All parameters are pre-adjusted to their typical values. But the set points in the "**Basic settings**" settings group **!!must!!** be adjusted before the first start-up of the gen-set.

! WRONG ADJUSTMENT OF BASIC PARAMETERS CAN DESTROY THE GEN-SET !

The following instructions are for qualified personnel only. To avoid personal injury do not perform any action not specified in this User guide!!!

4 General Guidelines

4.1 Introduction

The **HT-CL-AF1000LS** is a Mixer Driver Module which is optimized for use with Huegli Tech Gas Mixer RM814, RM25, RM40 and MiniMix.

This device performs either as a single or dual stepper motor control depending on the mixer type selected for use.

4.2 Safety instructions and Warnings

Before installing and starting the device, please read the operating instructions. These contain important notes for safety and use.

No liability can be accepted for damage arising from failure to follow the instructions or any inappropriate use.

The HT-CL-AF1000LS unit may only be used for the manner of operation prescribed in the operating instructions and only in connection with third-party devices and components recommended or installed by us or software supplied by us. Any other use shall be considered inappropriate use and will result in the voiding of all liability and warranty claims against the manufacturer.

Interventions and alterations that influence the safety technology and the functionality of the Mixer module may be carried out only by the manufacturer.

Fault-free and safe operation is conditional upon competent transport, assembly and installation as well as qualified use and correct maintenance.

All relevant accident prevention regulations and other generally recognized technical safety and health and safety at work rules are to be observed. Fault-free functioning of the machinery and its peripheral components is only guaranteed with original accessory parts and spare parts.

The HT-CL-AF1000LS unit is robust enough to be placed in a control cabinet with other operating control devices.

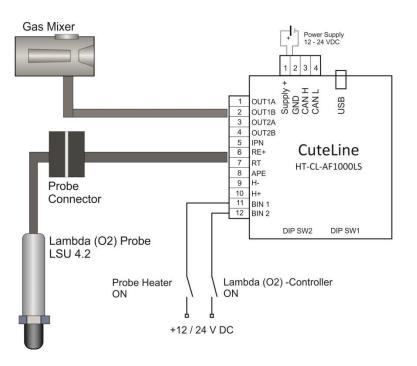
4.3 Guarantee terms and conditions

4.3.1 Correct use

The device is intended for exclusive use under the conditions described in the "Technical Data" rubric. Other uses are potentially dangerous. Huegli-Tech AG cannot accept liability for damage which results from incorrect use or application other than that for which it was intended.

4.3.2 Use of Accessories

Accessory parts may be installed or added only when they have been explicitly authorized by Huegli Tech AG. Any claims under guarantee, warranty or product liability shall be void if other parts are used.


The general guarantee terms and conditions of Huegli Tech AG shall apply.

5 Purpose and Function

The CuteLine AF1000LS module is a Lambda (O_2) controller which is designed to measure and control the Lambda / O_2 value of stoichiometric and lean burn gas engines. In addition to this unit a BOSCH[®] LSU 4.2 wide band lambda (O_2) probe and a Gas Mixer RM.. or MiniMix is required. The CuteLine AF1000LS has an integrated power supply for the heating circuit of the probe.

The module can work as a Standalone unit or in connection with a HT Controller or any other Genset Controller with Can Bus (J1939).

Working Principle

To start the measurement, the probe heater must first be turned on by closing the switch connected to BIN 1. The probe is now heated up by a progressive ramp because fast heating can damage the probe. This could last up to 1 minute. It is recommended to activate the heater together with the prestart command of the engine. To switch on the controller the switch connected to BIN 2 must be closed. This input should be activated when the GCB is closed. Especially on lean burn engines which are working parallel to mains it is not recommended to start the controller while the engine is synchronizing.

Hint

As long as the probe has not reached its working temperature the controller remains switched off. The Mixer remains in its Starting Position

Once the conditions to activate the controller are given it starts to control the gas mixer. This is done by comparing the measured against the requested Lambda / O_2 value.

6 Installation and connection

6.1 Mounting

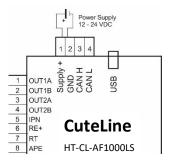
The CuteLine modules are designed to be mounted on a 35 mm DIN Rail and can be easily attached and detached from the DIN rail.

To mount the module on the DIN rail, attached the upper portion of the module onto the DIN rail and press down the module until the hook clicks itself.

To remove the module from the DIN rail, simply unhook the lower part using a screwdriver and lift the enclosure from the DIN rail.

ĺ

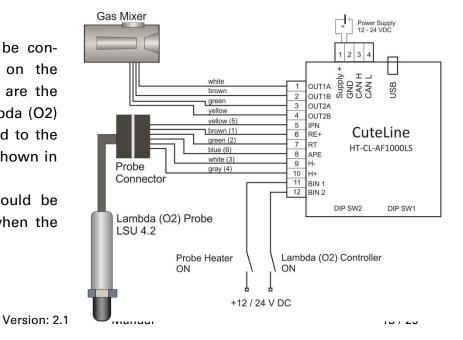
IMPORTANT


• Use of inappropriate cables may lead to wrong measured values.

6.2 Electrical Connection

All connectors can be pulled out from the board for easier wiring.

6.3 Power Supply


The nominal supply input for CuteLine AF1000LS Module is 24 VDC but it can also work from a voltage range of 7-30VDC. The green LED on the front is turned on when the device is connected to the power supply. The supply input is reverse polarity protected.

6.4 Wiring Probe and Mixer

The mixer and the probe must be connected according this diagram on the right. The numbers in brackets are the pins in the connector of the Lambda (O2) probe. These numbers correspond to the connector's terminal number as shown in the diagram on the right.

The cables of the harnesses should be only connected to the module when the module is switched off.

Identification: CL-AF1000LS_MN_EN_10.2020_V2.1

CuteLine

AF 1000LS

6.5 Dip Switch Settings

Dip SW 1

Pole	No.	1	2	3	4	5	6	7		8	
te	ON	C	CAN	Bus,	/	Free	Mixer Type	Mixer Type	CAN Termi	120 ination	Ohm
State	OFF		Nod dres tir	ss Se		Free	Mixer Type	Mixer Type	No Te	erminat	tion

Mixer Type	SW1:6	SW1:7
RM 814(5)	OFF	OFF
RM25/40(7)	ON	OFF
MiniMix (1.4)*		
SerNr. >= HT1057	OFF	ON
MiniMix(1.5)		
SerNr. <= HT1056	ON	ON

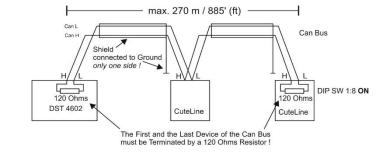
* From Software Version 1.11

The Number in brackets shows the number motor revolutions from 0-100%

Address	SW1:1	SW1:2	SW1:3	SW1:4
1	OFF	OFF	OFF	OFF
2	ON	OFF	OFF	OFF
3	OFF	ON	OFF	OFF
4	ON	ON	OFF	OFF
5	OFF	OFF	ON	OFF
6	ON	OFF	ON	OFF
7	OFF	ON	ON	OFF
8	ON	ON	ON	OFF
9	OFF	OFF	OFF	ON
10	ON	OFF	OFF	ON
11	OFF	ON	OFF	ON
12	ON	ON	OFF	ON
13	OFF	OFF	ON	ON
14	ON	OFF	ON	ON
15	OFF	ON	ON	ON
16*	ON*	ON*	ON*	ON*

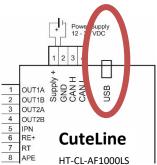
*Address Selection 16 (DIP-SW 1:1 to 1:4 ON) is for J1939 Mode, see Chapter 7.1.4.2

Dip SW 2


Lambda Probe Type	SW2:1	SW2:2	SW2:3	SW2:4
LSU 4.2	ON	ON	OFF	OFF
LSU 4.9	OFF	OFF	ON	ON

6.6 CAN Bus Connection

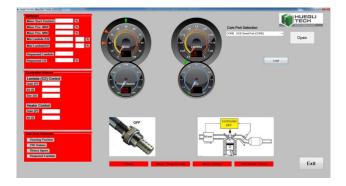
Using the CAN Bus connection, the bus cable must be connected to the terminals Can H(igh) and Can L(ow). If the module is the first or the last device in the bus, a termination resistor is required. There is a built-in resistor (120 Ohms) which can be activated by switching DIP SW1:8 to ON position. Shielded cable (for example, HELUKABEL CAN BUS 2x0.22) must be used for the CAN Bus connection.


If the device is connected to the controller HT-DST 4602 by Can Bus some settings can be done from the controller. Furthermore actual values (Mixer Position, Lambda Value etc.) are displayed on the controller.

Recommended Wiring

6.7 USB Port

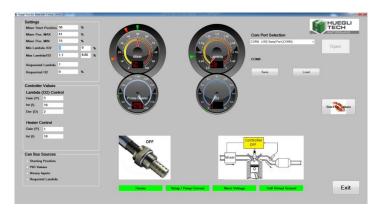
The USB port is used to configure all the settings in the AF1000LS Module. This can be done by the AF1000LS Setup Software.



7 PC Software for AF 1000LS Configuration

7.1 Installation

System Requirements Windows 7,8,10 (32/64 bit) Microsoft Framework Extended, can be downloaded here if not installed on you system : <u>http://www.microsoft.com/en-us/download/details.aspx?id=17718</u>


After the AF1000LS Setup Software is installed and started, the start screen appears:

The next step is to connect the PC and the module by using a USB cable. Next, select the **Com Port** and click on the button **Open** :

When the communication is active the software indicates the current set points and measured values of the controller.

The next chapters describe all required settings of the Mixer module AF1000LS. These set points must be configured if the module is setup for the first time or if changes are necessary.

7.1.2 Settings

The following shows the settings that must be configured in order for the Cuteline AF1000LS to work:

Mixer Starting Position

This determines the position of the Gas Mixer when the engine is started and the control mode is inactive (BIN 2 open).

Mixer Pos. Max. / Mixer Pos. Min.

This defines a working area of the mixer when the module is in control mode (BIN 2 closed).

This definition depends on the type of engine, type of mixer and	I
the requested Lambda value	

If this area is set to 40% for max. position and to 25% for min position the mixer is only allowed to work within this band.

Example:

The Starting Position is at 50% and the working area is set between 25% and 40%, requested Lambda value is 1.3 (= $4.84 \% O_2$).

Once the device is in control mode, the mixer starts to close and will reach a position of 35% which is within the working area. If the gas quality changes now, the mixer can work only between 25% and 40% as long as BIN 2 is closed.

Min. Lambda /O2 - Max. Lambda /O2

These two settings limit the value of the requested Lambda / O_2 to a certain band. If the AF1000LS module is connected to a controller HT-DST 4602, the requested Lambda / O_2 value, sent from the controller, must be within this limitation. Only the Lambda value can be set by the controller. The O2 value is calculated automatically..

Requested Lambda / Requested O₂

Here the requested Lambda or O_2 value for the engine can be set. The Lambda or O_2 value can be set here. If a new Lambda value is set, the corresponding O_2 value is calculated. In case a new O_2 value is set, the Lambda value is calculated.

7.1.3 Controller Values

The AF1000LS module has two control loops, one for the mixer and one for the probe heater.

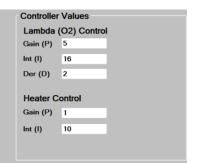
Lambda / O2 Control

The setting of this PID loop determines the reaction of the mixer if the actual measured Lambda O_2 value deviates from the requested value. The PID loop should not be set too fast, because this could influence the Speed / Load governing. Following values are recommended:

 Gain (P)
 5

 Int (I)
 15

 Der (D)
 2


 Heater Control
 6

 Gain (P)
 5

 INT (I)
 15

The probe should not be heated up too fast once BIN1 is closed

Identification:

Mixer Start Position	50	%	
Mixer Pos. MAX	41	%	
Mixer Pos. MIN	15	%	
Min Lambda /O2	1	0	%
Max Lambda/O2	1.5	7	%
Requested Lambda	1.3		
Requested O2	4.84	%	

Version: 2.1 Manual

7.1.4 Can Bus Sources

7.1.4.1 Can Bus Connection with HT-DST 4602

As mentioned in earlier chapters, the AF1000LS module can by connected via Can Bus to a controller HT-DST 4602.

Several Set Points and Values can be configured through the controller:

Set Points

Starting Position Requested Lambda Value PID Values for Mixer Control

Measured Values

Feedback Mixer Position Actual Lambda and O₂ value Requested Lambda Value Actual Voltage UR (Reference value for probe heater)

Following Set Points can be activated and are configurable on the HT-DST 4602:

Starting Position Mixer Starting Position is allowed to be changed from the HT-DST 4602

PID Values The PID loop values can be set from the HT-DST 4602

Binary Inputs

If this check box is activated, the binary inputs BIN1 and BIN2 of the AF1000LS module are unused. The required signals to activate the probe heater and start the control loop will be sent by Can Bus from the DST 4602

Requested Lambda

It enables the possibility to set the requested Lambda values from the HT-DST 4602

7.1.4.2 J1939 Connection to other Genset Controllers

Furthermore the AF1000LS can be connected to any other controllers which provide the J1939 protocol for *Volvo EMSI Allspeed*.

Using this ECU following Can Bus Sources can be selected :

Starting Position

Mixer Starting Position is allowed to be changed from the Controller. TSC1" pgn="0x0000" This value is written on PGN 0000 (TSC1). The value Requested Speed (Byte 1 + 2) is used for it

Binary Inputs

Identification:

If this check box is activated, the binary inputs BIN1 and BIN2 of the AF1000LS module are unused. The required signals to activate the probe heater and start the control loop will be sent by Can Bus from the Controller.

For this purpose the PGN FF49 (VP_PRO) is used. The ECU signal *Crank Request* (Byte 2.2) is used for the *Heater ON* signal , for the *Controller ON* signal the ECU value *Stop Request* (Byte 2.4) is used.

Can Bus Sources
Starting Position
PID Values
Binary Inputs
Requested Lambda

Can Bus Sources		
Starting Position		
PID Values		
Binary Inputs		
Requsted Lambda		

The signal *Crank Request* sent from Controller must be assigned to a function which gives a HIGH signal as soon as the engine is started and must stay HIGH as long as the engine is running.

The *Stop Request* signal can be assigned to the *GCB ON* signal. So the Lambda (O2) controller is switched ON as soon as the engine is loaded.

Requested O2 (Lambda)

It enables the possibility to set the requested O2 (Lambda) values from the Controller. For this purpose the PGN FF49 (VP_PRO) Byte 0+1 (Throttle Position) is used.

Lambda Sensor Status

PGN FECA

AF1000LS Status Designation: Engine Lambda Sensor ready J1939 Designation: Oxygen sensor heated

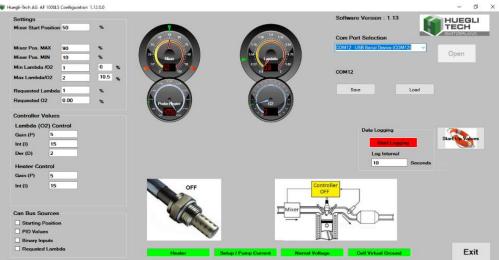
Byte	Bit Assignment & Description	Value(Dec)	Data Range	Resolution	Unit
#					
	Bit 8-7 Malfunction indicator lamp	00			
	status				
1	Bit 6-5 Red stop lamp status	00			
	Bit 4-3 Amber warning lamp status	00			
	Bit 1-2 Protect lamp status	00			
2	Bits 8-1: Reserved for SAE	00			
3 to	SPN (16bit msb)				
4		724	0 – 524287	1	SPN
5	Bits 8-6: SPN(Isb 3 bits)				
	Bits 5-1: FMI	31	0 – 37	1	FMI
6	Bit 7-1 Occurrence count	Variable	0 – 126	1	Count

The PID Settings can be done only by the PC Software

Measured Values indicated on the Controller Following values can be indicated on the Controller :

Mixer Position	PGN F003 (EEC2) Byte 1	Accelerator Pedal Position
Actual O2	PGN F004 (EEC1) Byte 2	Actual Torque
Requested O2	PGN F004 (EEC1) Byte 1	Demand Torque

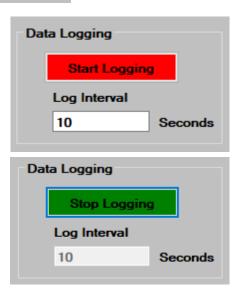
7.2 Data Logging


The PC Software must be open and connected to the controller during the logging process.

7.2.1 PC Software version 1.12 and above

The Data Logging function saves the data, time and measured values into SCV file. The SCV files can be opened by Microsoft Excel or other TXT editors. The measured values being saved: *Lambda, O2, Mixer Position, Heater.*

	А	В	С	D	E	F
1	Date	Time	Lambda	02	Mixer Pos	Heater
2	2020-10-21	14:09:47	4.08	15.85	50	4092
3	2020-10-21	14:09:57	6.14	17.57	50	1320
4	2020-10-21	14:10:07	6.14	17.57	54	904
5	2020-10-21	14:10:17	6.14	17.57	70.4	985


After connecting to the controller successfully, the Data Logging control box will appear at the right side of the main window.

Start Logging (Stop Logging) Button Click the button to start or stop logging. The button in Red colour: Logging stopped The button in Green colour: Logging in progress

Log Interval

The log interval time in second, default 10 seconds. Minimum 1 second, Maximum interval: 600 seconds.

Enter Log Header

After click Start Logging button, the Log Header input box will be popup. Please input any charaters for the identification of current log. The Log Header will be added into the log file name.

Log file location The log files will be saved inside folder: [C:\Huegli-Tech\HT_CL_AF1000LS]

AF1000LS Configuration	×
Enter Log Header	ОК
	Cancel
ABC	

Log file name format

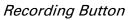
The log file name format is: LOG_[Log Header]_[Date]_[Time].csv Example: [LOG_ABC_20201021_132045.csv]

Name Date modified Type	
Name Date modified Type	Size
DOG_ABC_20201021_132045 2020-10-21 13:21 Microsoft Excel C	. 1 KB

7.2.2 PC Software version 1.11 and below

The Data Logging function saves the data, time and measured values into TXT file.

The TXT files can be opened by any TXT editors.


The measured values being saved: Lambda, O2, Mixer Position, Heater.

Record 20201021	143002 - Note	pad				
File Edit Format	View Help					
XYZ						
Date T	ime	Lambda O2	Mixer	Pos	Heater	
2020-10-2	1	14:30:12	0	0	50	4096

After connecting to the controller successfully, the Recording button and Recording Interval input box will appear at the right side of the main window.

Huegli-Tech AG AF 1000LS Cor	nfiguration 1.11.0.0				- 0 ×
Settings Mixer Start Position 50) %	0.00	12 14 15	Software Version : 1.13 Com Port Selection	
Mixer Pos. MAX 90 Mixer Pos. MIN 10			1.15 1.04 Lapubda	COM12 USB Serial Device (COM12)	✓ Open COM12
Min Lambda /02 1 Max Lambda/02 2	0		0.1 ² 0.1 ² 0.1 ² 2	COM12	
Requested Lambda 1 Requested O2 0.0	% 00 %	(Prose Page)		Save	oad
Controller Values Lambda (O2) Contro	ol				
Gain (P) 5 Int (I) 15 Der (D) 2				Recording 10	Start Op Values
Heater Control Gain (P) 5					-
Int (I) 15		OFF			
Can Bus Sources Starting Position PID Values					
Binary Inputs Requsted Lambda		Heater	Setup / Pump Current Ne	سیر بین rnst Voltage Cell Virtual Ground	Exit

CuteLine

Click the button to start or stop logging. The button in Red colour: Logging stopped The button in Green colour: Logging in progress

Log Interval

The log interval time in second, default 10 seconds. Minimum 1 second, Maximum interval: 100 seconds.

Enter Log Header

After click Start Logging button, the Log Header input box will be popup. Please input any charaters for the identification of current log. The Log Header will be added into the 1st line of the log file.

Log file location

The log files will be saved inside folder: [C:\Users\[WIN USER]\AppData\Local\VirtualStore\Program Files (x86)\AF1000LS Configuration]

Log file name format

The log file name format is: Record [Date] [Time].txt Example: [Record 20201021 143002.txt]

This	This PC > SSD (C:) > Users > mengs > AppData > Local > VirtualStore > Program Files (x86) > AF1000LS Config				
^	Name	Date modified	Туре	Size	
	ComSet.set	2020-10-08 10:28	SET File	1 KB	
	Record 20201008 103039	2020-10-08 10:34	Text Document	1 KB	
	Record 20201008 103440	2020-10-08 10:35	Text Document	1 KB	
	📄 Record 20201008 103553	2020-10-08 10:39	Text Document	1 KB	

Recording	10
AF1000LS Configuration	X
Enter Record Header	OK
XYZ	

8 Measured Values and Status

If the PC is connected to the AF1000LS module several values and the status of the device can be read

8.1 Measured Values

8.1.1 Mixer Values

Starting Position Max. Position Actual Position Min. Position

8.1.2 Probe Heater

Requested Value UR

Actual Value UR

The measured value UR is an internal value of the probe which indicated if the temperature of the probe has reached the operation temperature. The value is around 900 depending on the calibration value of the probe.

As long as the probe has not reached its operational temperature, the controller is not switched on!

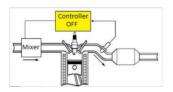
8.1.3 Lambda / O₂ - values

Requested Lambda	1.28 1.4 1.52 1.38 1.1 1.2 1.52 1.38 1.1 1.2 1.52 1.38 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5
Actual Lambda	
Requested O ₂	
Actual O ₂	

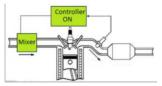
HINT

As long as the probe has not reached its operational temperature, the indicated values are invalid!

8.1.4 Status Probe Heating


BIN1 open Probe not heated

BIN1 closed Probe heating up operation temperature not reached



BIN1 closed Probe heated up operation temperature reached

8.1.5 Status Controller

BIN 2 open and /or operation temperature not reached

BIN 2 closed and operation temperature reached

8.1.6 Status Probe

Identification:

The Status Bar shows the actual status of the probe.

If any of the indications turn to red the probe is either damaged or there is a problem in the wiring.

9 Technical Data

9.1 Input/output parameters

Power Supply	
Current Consumption	Lambda Probe On : Maximum 1.2 A with 24VDC Power Supply Input @ 25°C
	Lambda Probe Off: Maximum 0.08A with 24VDC Power Supply Input @ 25°C
Input On State Voltage	Minimum 3.5V / Maximum 28.8V
Input Off Stage Voltage	Maximum 1.8V
Number of Inputs	
Number of Mixer Control Output	

9.2 Performance

Supported Lambda Probe LSU4.2 / LSU4.9
--

9.3 Ambient

Operational Temperature	40 t	o 70 °C	(-40 to	+158 ^o F)
Storage Temperature	40 to	+85 ^o C	(-40 to	+185 ⁰ F)
Relative Humidity	5 to	95%, N	on-con	densing

9.4 Standards / Regulation

Communication Supported Protocols	Can Bus HT Controller, J1939
	Bus through USB (for configuration purpose only)

9.5 Standards / Regulation

Authorizing office	CE and RoHS requirements
Communication	CAN Bus SAE J1939, Modbus RTU

9.6 Dimension and weight

Dimension (Including Terminal blocks)	30 x 110 x 94 mm
Weight (Including Terminal blocks)	205g

9.7 Configuration parameters

Wire Size	2 to 12 AWG)
MountingDIM	N Rail 35 mm

© HUEGLI TECH, protection endorsement in accordance with ISO 16016 standards Transmission and/or copying of this document, or utilization or communication of its contents other than for its authorized purpose are forbidden, insofar as permission has not been expressly granted. Violators will be prosecuted. All patent and design rights reserved.

CL-AF1000LS_MN_EN_10.2020_V2.1